Affiliation:
1. Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
Abstract
Shape reconstruction methods are particularly well suited for imaging of concealed targets. Yet, these methods are rarely employed in real nondestructive testing applications, since they generally require the electrical parameters of outer object as a priori knowledge. In this regard, we propose an approach to relieve two well known shape reconstruction algorithms, which are the linear sampling and the factorization methods, from the requirement of the a priori knowledge on electrical parameters of the surrounding medium. The idea behind this paper is that if a measurement of the reference medium (a medium which can approximate the material, except the inclusion) can be supplied to these methods, reconstructions with very high qualities can be obtained even when there is no information about the electrical parameters of the surrounding medium. Taking the advantage of this idea, we consider that it is possible to use shape reconstruction methods in buried object detection. To this end, we perform several experiments inside an anechoic chamber to verify the approach against real measurements. Accuracy and stability of the obtained results show that both the linear sampling and the factorization methods can be quite useful for various buried obstacle imaging problems.
Funder
Scientific and Research Council of Turkey
Subject
Electrical and Electronic Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献