Advanced Vector Controller for a Four-Switch Three-Phase Rectifier under Unbalanced Grid Voltage

Author:

Alizadeh Bidgoli M.1ORCID,Honarbari S.2ORCID

Affiliation:

1. Department of Electrical Engineering, Yadegar-e-Imam Khomeini (RAH) Shahre-Rey Branch, Islamic Azad University, Tehran, Iran

2. Department of Bioengineering and Robotic, College of Engineering, IIT, Genoa, Italy

Abstract

One of the main challenges of a four-switch three-phase rectifier (FSTPR) is a DC imbalance in capacitor voltages. On the other hand, under unbalanced grid voltage conditions, unbalanced three-phase input current and the DC-link voltage affect the performance of the FSTPR. Although many papers focus on designing a controller to balance DC-link capacitor voltage, a few papers are available to cope with the imbalance of DC-link capacitor voltages and input current simultaneously under unbalanced grid voltage. In this paper, first, the operation of the FSTPR under unbalanced grid voltage conditions is investigated. It can be seen that under these conditions, the oscillatory parts of the active and reactive input power, i.e., sin and cos components, are the leading cause of the problems that can severely degrade the FSTPR performance of the controller. Therefore, this paper presents a promising control technique to eliminate the mentioned oscillation components. Aiming at this purpose, the current control loops in the dq axis are divided into two positive and negative sequences, i.e., idq+ and idq−. Simulation results in MATLAB/SimPowerSystem™ show that the proposed controller can reduce the output voltage ripple, the total harmonic distortion, and the unbalancing of input current compared to a conventional controller. Under these conditions, the DC-link capacitor voltages are more balanced, significantly reducing the voltage limiter of the FSTPR.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3