Power Generation Prediction Method of Offshore Wind Turbines Based on Cascaded Deep Learning

Author:

Sun Zhen’ao1ORCID,Chen Zhe12ORCID

Affiliation:

1. School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China

2. Department of Energy Technology, Aalborg University, Aalborg, DK-9220, Denmark

Abstract

Aiming at the problems of low prediction accuracy, long time, and poor results in current wind turbine generation power prediction methods, an offshore wind turbine generation power prediction method based on cascaded deep learning is proposed. Using deep belief networks, stacked autoencoding networks, and long short-term memory networks, a cascaded deep learning method is proposed to predict the power generation of offshore wind turbines. Multiple feature extractors are used to extract and fuse high-level features to form a unified feature with richer information to predict the power generation sequence of offshore wind turbines. According to the modeling strategy and port design strategy, using the stacked autoencoding networks as the basic unit, a cascaded deep learning model for generating power prediction of offshore wind turbines is established. Through the selection of input variables, the variables that have a great correlation with wind power are obtained. The layer-by-layer greedy algorithm is used for training from bottom to top, and supervised learning is used to fine-tune the network parameters from top to bottom to realize the generation power prediction of the offshore wind turbine. The experimental results show that the proposed method is effective in predicting the power generation of offshore wind turbines, which can effectively improve the prediction accuracy and shorten the prediction time.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3