Fatigue Modeling via Mammalian Auditory System for Prediction of Noise Induced Hearing Loss

Author:

Sun Pengfei1,Qin Jun1,Campbell Kathleen2

Affiliation:

1. Department of Electrical and Computer Engineering, Southern Illinois University, Carbondale, IL 62901, USA

2. Department of Surgery, School of Medicine, Southern Illinois University, Springfield, IL 62794, USA

Abstract

Noise induced hearing loss (NIHL) remains as a severe health problem worldwide. Existing noise metrics and modeling for evaluation of NIHL are limited on prediction of gradually developing NIHL (GDHL) caused by high-level occupational noise. In this study, we proposed two auditory fatigue based models, including equal velocity level (EVL) and complex velocity level (CVL), which combine the high-cycle fatigue theory with the mammalian auditory model, to predict GDHL. The mammalian auditory model is introduced by combining the transfer function of the external-middle ear and the triple-path nonlinear (TRNL) filter to obtain velocities of basilar membrane (BM) in cochlea. The high-cycle fatigue theory is based on the assumption that GDHL can be considered as a process of long-cycle mechanical fatigue failure of organ of Corti. Furthermore, a series of chinchilla experimental data are used to validate the effectiveness of the proposed fatigue models. The regression analysis results show that both proposed fatigue models have high corrections with four hearing loss indices. It indicates that the proposed models can accurately predict hearing loss in chinchilla. Results suggest that the CVL model is more accurate compared to the EVL model on prediction of the auditory risk of exposure to hazardous occupational noise.

Funder

U.S. Department of Defense

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3