Parametric Studies of Cement Production Processes

Author:

John John P.1ORCID

Affiliation:

1. Electrical and Power Engineering, Mbeya University of Science and Technology (MUST), P.O. Box 131, Tanzania

Abstract

The cement industry is one of the most intensive energy consumers in the industrial sectors. The energy consumption represents 40% to 60% of production cost. Additionally, the cement industry contributes around 5% to 8% of all man-made CO2 emissions. Physiochemical and thermochemical reactions involved in cement kilns are still not well understood because of their complexity. The reactions have a decisive influence on energy consumption, environmental degradation, and the cost of cement production. There are technical difficulties in achieving direct measurements of critical process variables in kiln systems. Furthermore, process simulation is used for design, development, analysis, and optimization of processes, when experimental tests are difficult to conduct. Moreover, there are several models for the purpose of studying the use of alternative fuels, cement clinker burning process, phase chemistry, and physical parameters. Nonetheless, most of them do not address real inefficiency taking place in the processes, equipment, and the overall system. This paper presents parametric study results of the four-stage preheater dry Rotary Kiln System (RKS) with a planetary cooler. The RKS at the Mbeya Cement Company (MCC) in Tanzania is used as a case study. The study investigated the effects of varying the RKS parameters against system behaviour, process operation, environment, and energy consumptions. Necessary data for the modelling of the RKS at the MCC plant were obtained either by daily operational measurements or laboratory analyses. The steady-state simulation model of the RKS was carried out through the Aspen Plus software. The simulation results were successfully validated using real operating data. Predictions from parametric studies suggest that monitoring and regulating exhaust gases could improve combustion efficiency, which, in turn, leads to conserving fuels and lowering production costs. Composition of exhaust gases also depends both on the type of fuel used and the amount of combustion air. The volume of exit flue gases depends on the amount of combustion air and infiltrating air in the RKS. The results obtained from the study suggest a potential of coal saving at a minimum of about ṁcoal=1263kg·h1, which approximates to 76,126 tons per year at the current kiln feed of 58,000 kg·h-1. Thus, this translates to a specific energy saving of about 1849.12 kJ·kgcl-1, with relatively higher clinker throughput. In this vein, process modelling provides effective, safe, and economical ways for assessing the performance of the RKS.

Funder

Mbeya University of Science and Technology

Publisher

Hindawi Limited

Subject

General Medicine

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3