A Novel Modeling Technique for the Forecasting of Multiple-Asset Trading Volumes: Innovative Initial-Value-Problem Differential Equation Algorithms for Reinforcement Machine Learning

Author:

Al Janabi Mazin A. M.1ORCID

Affiliation:

1. Full Professor of Finance & Banking and Financial Engineering, Tecnologico de Monterrey, EGADE Business School, Santa Fe Campus, Mexico, Mexico

Abstract

Liquidity risk arises from the inability to unwind or hedge trading positions at the prevailing market prices. The risk of liquidity is a wide and complex topic as it depends on several factors and causes. While much has been written on the subject, there exists no clear-cut mathematical description of the phenomena and typical market risk modeling methods fail to identify the effect of illiquidity risk. In this paper, we do not propose a definitive one either, but we attempt to derive novel mathematical algorithms for the dynamic modeling of trading volumes during the closeout period from the perspective of multiple-asset portfolio(s), as well as for financial entities with different subsidiary firms and multiple agents. The robust modeling techniques are based on the application of initial-value-problem differential equations technique for portfolio selection and risk management purposes. This paper provides some crucial parameters for the assessment of the trading volumes of multiple-asset portfolio(s) during the closeout period, where the mathematical proofs for each theorem and corollary are provided. Based on the new developed econophysics theory, this paper presents for the first time a closed-form solution for key parameters for the estimation of trading volumes and liquidity risk, such as the unwinding constant, half-life, and mean lifetime and discusses how these novel parameters can be estimated and incorporated into the proposed techniques. The developed modeling algorithms are appealing in terms of theory and are promising for practical econophysics applications, particularly in developing dynamic and robust portfolio management algorithms in light of the 2007–2009 global financial crunch. In addition, they can be applied to artificial intelligence and machine learning for the policymaking process, reinforcement machine learning techniques for the Internet of Things (IoT) data analytics, expert systems in finance, FinTech, and within big data ecosystems.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3