Application of Partial Differential Equation Image Classification Methods to the Aesthetic Evaluation of Images

Author:

Liu Feifeng1ORCID,Wang Weihu2

Affiliation:

1. School of Arts, Tiangong University, Tianjin 300387, China

2. The School of Computer and Information Science, Hubei Engineering University, Xiaogan, Hubei 432000, China

Abstract

The average accuracy of the fusion of color harmony and composition features is 75.17%, which is higher than that of a single feature. The classification accuracy of NP-DP-DCNN structure is about 1% higher than that of other methods and 1.77% higher than that of NP-DCNN. Traditional image aesthetic evaluation methods are only effective for specific image sets or specific style images and are not suitable for all types of images. Based on the introduction of the partial differential equation image filtering method, through the parallel supervised learning of aesthetic attribute labels, this paper extracts the global aesthetic depth features, adopts the partial differential equation to evolve the contour C constant, and constructs a convolution neural network. The structure of a convolution kernel learned by using parallel network structure achieves better classification performance. Through the aesthetic evaluation experiment, the overall test accuracy is improved by 0.58% and the average accuracy of the integration of color harmony and composition features is 75.17%, which is higher than that of a single feature. The classification accuracy of NP-DP-DCNN structure is about 1% higher than that of other methods and 1.83% higher than that of NP-DCNN. It has achieved better test accuracy than before in the seven subcategories with discrimination between high aesthetic and low aesthetic images. It has achieved better classification performance than the traditional feature extraction methods in the public dataset CUHK database, and it has excellent aesthetic reference value.

Funder

China Textile Industry Federation

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3