Synthesis, Characterization, and Biological Studies of a Piperidinyl Appended Dipicolylamine Ligand and Its Rhenium Tricarbonyl Complex as Potential Therapeutic Agents for Human Breast Cancer

Author:

Subasinghe Amali1,Perera Inoka C.2,Pakhomova Svetlana3,Perera Theshini1ORCID

Affiliation:

1. Department of Chemistry, University of Sri Jayewardenepura, Nugegoda, Sri Lanka

2. Department of Zoology and Environmental Science, University of Colombo, Colombo, Sri Lanka

3. Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA

Abstract

A novel ligand bearing a central piperidinyl sulfonamide group, N(SO2pip)dpa, and its corresponding Re tricarbonyl complex, [Re(CO)3(N(SO2pip)dpa)]+, have been synthesized in good yield. The methylene CH2signal seen as a singlet (4.54 ppm) in a1H NMR spectrum of the ligand in DMSO-d6appears as two doublets (5.39, 5.01 ppm) in a spectrum of the [Re(CO)3(N(SO2pip)dpa)]+complex and confirms the presence of magnetically nonequivalent protons upon coordination to Re. Structural results revealed that the Re–N bond lengths fall within the normal range establishing coordination of ligand to metal. The presence of intraligandππandnπtransitions is indicated by the absorption peaks around 200–250 nm in UV-visible spectra. Absorption peaks in UV-visible spectra around 300 nm for metal complexes were identified as MLCT transitions. The S–N stretch observed as a strong peak at 923 cm−1for N(SO2pip)dpa appeared at a shorter frequency, at 830 cm−1in an FTIR spectrum of the [Re(CO)3(N(SO2pip)dpa)]+. The intense fluorescence displayed by the N(SO2pip)dpa ligand has quenched upon coordination to Re. Relatively low IC50values given by human breast cancer cells, MCF-7, (N(SO2pip)dpa = 139 μM, [Re(CO)3(N(SO2pip)dpa)]+= 360 μM) indicate that N(SO2pip)dpa and [Re(CO)3(N(SO2pip)dpa)]+are promising novel compounds that can be further investigated on their usage as potential anticancer agents.

Funder

University of Sri Jayewardenepura

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3