Affiliation:
1. Computer Engineering Department, Faculty of Computer and Electrical Engineering, Shahid Beheshti University, Evin, Tehran 1983963113, Iran
2. Computer Engineering Department, Faculty of Engineering, University of Isfahan, Isfahan 8174673441, Iran
Abstract
In this paper, we have presented a new permutation-substitution image encryption architecture using chaotic maps and Tompkins-Paige algorithm. The proposed encryption system includes two major parts, chaotic pixels permutation and chaotic pixels substitution. A logistic map is used to generate a bit sequence, which is used to generate pseudorandom numbers in Tompkins-Paige algorithm, in 2D permutation phase. Pixel substitution phase includes two process, the tent pseudorandom image (TPRI) generator and modulo addition operation. All parts of the proposed chaotic encryption system are simulated. Uniformity of the histogram of the proposed encrypted image is justified using the chi-square test, which is less than (255, 0.05). The vertical, horizontal, and diagonal correlation coefficients, as well as their average and RMS values for the proposed encrypted image are calculated that is about 13% less than previous researches. To quantify the difference between the encrypted image and the corresponding plain-image, three measures are used. These are MAE, NPCR, and UACI, which are improved in our proposed system considerably. NPCR of our proposed system is exactly the ideal value of this criterion. The key space of our proposed method is large enough to protect the system against any Brute-force and statistical attacks.
Subject
General Engineering,General Mathematics
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献