Molecular Analysis of Twist1 and FGF Receptors in a Rabbit Model of Craniosynostosis: Likely Exclusion as the Loci of Origin

Author:

Gallo Phillip H.1,Cray James J.2,Durham Emily L.1,Mooney Mark P.34,Cooper Gregory M.145,Kathju Sandeep1ORCID

Affiliation:

1. Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA

2. Department of Oral Biology, Georgia Health Sciences University, Augusta, GA 30912, USA

3. Departments of Anthropology and Orthodontics, University of Pittsburgh, Pittsburgh, PA 15261, USA

4. Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA

5. Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA

Abstract

Craniosynostosis is the premature fusion of the cranial vault sutures. We have previously described a colony of rabbits with a heritable pattern of nonsyndromic, coronal suture synostosis; however, the underlying genetic defect remains unknown. We now report a molecular analysis to determine if four genes implicated in human craniosynostosis, TWIST1 and fibroblast growth factor receptors 1–3 (FGFR1–3), could be the loci of the causative mutation in this unique rabbit model. Single nucleotide polymorphisms (SNPs) were identified within the Twist1, FGFR1, and FGFR2 genes, and the allelic patterns of these silent mutations were examined in 22 craniosynostotic rabbits. SNP analysis of the Twist1, FGFR1, and FGFR2 genes indicated that none were the locus of origin of the craniosynostotic phenotype. In addition, no structural mutations were identified by direct sequence analysis of Twist1 and FGFR3 cDNAs. These data indicate that the causative locus for heritable craniosynostosis in this rabbit model is not within the Twist1, FGFR1, and FGFR2 genes. Although a locus in intronic or flanking sequences of FGFR3 remains possible, no direct structural mutation was identified for FGFR3.

Funder

National Institute of Dental and Craniofacial Research

Publisher

Hindawi Limited

Subject

Pharmaceutical Science,Genetics,Molecular Biology,Biochemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3