Affiliation:
1. Laboratory of Physical Chemistry, Faculty of Science, Department of Chemistry, University of Guilan, Rasht, Iran
Abstract
Interactions of cationic tetrakis (N, N′, N″, N‴- tetramethyltetra-3, 4-pyridinoporphyrazinatozinc (II) (Zn (tmtppa)) with synthetic polynucleotides, poly (G-C) and poly (A-T), and calf thymus DNA have been characterized in 7.5 mM phosphate buffer of pH 7.2 by UV-Vis absorption and fluorescence spectroscopy. The appearance of hypochromicity more than 30% in UV-Vis spectra of porphyrazine due to interaction of both poly (G-C) and poly (A-T) indicates interaction similar to that of porphyrazine with DNA.The binding constants were determined from the changes in the Q-band maximum of the porphyrazine spectra at various poly (G-C) and DNA concentrations. The values of K were 2.5 × 106M−1, 2.5 × 106M−1and 2.5 × 105M−1for poly (G-C), poly (A-T) and DNA, respectively, at 25°C. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) were calculated using the van't Hoff equation at various temperatures. The enthalpy and entropy changes were determined to be 41.14 kJ mol−1and 260.50 J mol−1·K−1for poly (G-C) and 53.59 kJ mol−1and 285.46 J mol−1·K−1for DNA at 25°C. The positive and large values of the entropy and enthalpy suggest that both hydrophobic and electrostatic interactions may play an important role in the stabilization of the complex formation. The binding of polynucleotides to porphyrazine quenches fluorescence emission of ethidium bromide (EB), and the quenching process obeys linear Stern-Volmer relationship. The results reviled groove-binding mode of porphyrazine for both AT- and GC-rich polynucleotides of DNA.
Subject
Cancer Research,Cell Biology,Molecular Medicine,General Medicine,Pathology and Forensic Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献