DNA Damage and Augmented Oxidative Stress in Bone Marrow Mononuclear Cells from Angiotensin-Dependent Hypertensive Mice

Author:

Campagnaro Bianca P.1,Tonini Clarissa L.1,Nogueira Breno V.12,Casarini Dulce E.3,Vasquez Elisardo C.14,Meyrelles Silvana S.1

Affiliation:

1. Laboratory of Transgenes and Cardiovascular Control, Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Avenida Marechal Campos 1468, 29043-900 Vitoria, ES, Brazil

2. Department of Morphology, Health Sciences Center, Federal University of Espirito Santo, 29045-402 Vitoria, ES, Brazil

3. Department of Nephrology, Federal University of Sao Paulo (UNIFESP), 04021-001 Sao Paulo, SP, Brazil

4. College of Health Sciences, EMESCAM, 29043-900 Vitoria, ES, Brazil

Abstract

It has been proposed that the nonhemodynamic effects of angiotensin II are important for the damage observed in the two-kidney, one-clip (2K1C) renovascular hypertension model. Much evidence confirms that angiotensin II is directly involved in NAD(P)H oxidase activation and consequent superoxide anion production, which can damage DNA. The current study was performed to examine the effects of angiotensin-II-dependent hypertension in bone marrow mononuclear cells (BM-MNC); dihydroethidium staining was used to assess reactive oxygen species (ROS) production, and the comet assay was used to assess DNA fragmentation in 2K1C hypertensive mice 14 days after renal artery clipping. In this study we demonstrated that 2K1C hypertensive mice have an elevated lymphocyte count, while undifferentiated BM-MNC counts were diminished. 2K1C mice also showed an augmented ROS production and marked BM-MNC DNA fragmentation. In conclusion, endogenous renin angiotensin system activation-induced arterial hypertension is characterized by excessive ROS production in BM-MNC, which might cause marked DNA damage.

Funder

Fundação de Amparo à Pesquisa do Espírito Santo

Publisher

Hindawi Limited

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3