Genetic Relationship and Evolution Analysis among Malus Mill Plant Populations Based on SCoT Molecular Markers

Author:

Yao Yuan1ORCID

Affiliation:

1. College of Life Sciences, Shanghai Normal University, Shanghai 200234, China

Abstract

Malus Mill genotype is highly heterozygous, and many theoretical problems such as genetic relationship and evolution process among germplasm are difficult to be solved by traditional analysis methods. The development of SCoT(start codon targeted polymorphism) molecular markers suitable for apples is of great significance for studying the origin, evolution, genetic relationship and genetic diversity of Malus Mill germplasm resources. In this paper, the genetic relationship and evolution of 15 materials were analyzed by SCoT molecular marker. The results showed that the gene differentiation coefficient values of four Malus Mill plants at the species level were 0.423, 0.439, 0.428 and 0.460, respectively, which indicated that there was obvious genetic differentiation among the populations of these four Malus Mill plants, but there were some differences among the populations of different Malus Mill plants. The gene differentiation coefficient of coextensive populations with different geographical distribution varied from 0.177 to 0.086 (average 0.138), which indicated that the genetic similarity of species in coextensive composite populations was high and there was a close genetic relationship among species. This indicates that SCoT molecular markers can be effectively used in the analysis of intraspecific genetic relationship and identification of intraspecific strains of Malus Mill plants.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3