Affiliation:
1. Department of Computer Science, University of Taipei, Taipei 100, Taiwan
Abstract
Stability analysis issues and controller synthesis for descriptor systems with parametric uncertainty in the derivative matrix are discussed in this paper. The proposed descriptor system can extend the system’s modeling extent of physical and engineering systems from the traditional state-space model. First, based on the extendedD-stability definitions for the descriptor model, necessary and sufficient admissibility andD-admissibility conditions for the unforced nominal descriptor system are derived and formulated by compact forms with strict linear matrix inequality (LMI) manner. In contrast, existing results need to involve nonstrict LMIs, which cannot be evaluated by current LMI solvers and need some extra treatments. Deducing from the obtained distinct results, the roust admissibility andD-admissibility of the descriptor system with uncertainties in both the derivative matrix and the system’s matrices thus can be coped. Furthermore, by involving a proportional and derivative state feedback (PDSF) control law, we further address the controller design for the resulting closed-loop systems. Since all the proposed criteria are explicitly expressed in terms of the strict LMIs, we can use applicable LMI solvers for evaluating the feasible solutions. Finally, the efficiency and practicability of the proposed approach are demonstrated by two illustrative examples.
Funder
Ministry of Science and Technology of the People’s Republic of China
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献