Genome-Wide Scan for Methylation Profiles in Keloids

Author:

Jones Lamont R.1,Young William2,Divine George3,Datta Indrani4,Chen Kang Mei1,Ozog David5,Worsham Maria J.1

Affiliation:

1. Department of Otolaryngology-Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA

2. Proliance Eastside ENT, Kirkland, WA 98033, USA

3. Department of Public Health Sciences, Henry Ford Health System, Detroit, MI 48202, USA

4. Center for Bioinformatics, Henry Ford Health System, Detroit, MI 48202, USA

5. Department of Dermatology, Henry Ford Hospital, Detroit, MI 48202, USA

Abstract

Keloids are benign fibroproliferative tumors of the skin which commonly occur after injury mainly in darker skinned patients. Medical treatment is fraught with high recurrence rates mainly because of an incomplete understanding of the biological mechanisms that lead to keloids. The purpose of this project was to examine keloid pathogenesis from the epigenome perspective of DNA methylation. Genome-wide profiling used the Infinium HumanMethylation450 BeadChip to interrogate DNA from 6 fresh keloid and 6 normal skin samples from 12 anonymous donors. A 3-tiered approach was used to call out genes most differentially methylated between keloid and normal. When compared to normal, of the 685 differentially methylated CpGs at Tier 3, 510 were hypomethylated and 175 were hypermethylated with 190 CpGs in promoter and 495 in nonpromoter regions. The 190 promoter region CpGs corresponded to 152 genes: 96 (63%) were hypomethylated and 56 (37%) hypermethylated. This exploratory genome-wide scan of the keloid methylome highlights a predominance of hypomethylated genomic landscapes, favoring nonpromoter regions. DNA methylation, as an additional mechanism for gene regulation in keloid pathogenesis, holds potential for novel treatments that reverse deleterious epigenetic changes. As an alternative mechanism for regulating genes, epigenetics may explain why gene mutations alone do not provide definitive mechanisms for keloid formation.

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3