A Particle Swarm Optimization-Based Method for Numerically Solving Ordinary Differential Equations

Author:

Zhong Xian-Ci1ORCID,Chen Jia-Ye1,Fan Zhou-Yang1

Affiliation:

1. School of Civil Engineering and Architecture, Guangxi University, Nanning, Guangxi 530004, China

Abstract

The Euler method is a typical one for numerically solving initial value problems of ordinary differential equations. Particle swarm optimization (PSO) is an efficient algorithm for obtaining the optimal solution of a nonlinear optimization problem. In this study, a PSO-based Euler-type method is proposed to solve the initial value problem of ordinary differential equations. In the typical Euler method, the equidistant grid points are always used to obtain the approximate solution. The existing shortcoming is that when the iteration number is increasing, the approximate solution could be greatly away from the exact one. Here, it is considered that the distribution of the grid nodes could affect the approximate solution of differential equations on the discrete points. The adopted grid points are assumed to be free and nonequidistant. An optimization problem is constructed and solved by particle swarm optimization (PSO) to determine the distribution of grid points. Through numerical computations, some comparisons are offered to reveal that the proposed method has great advantages and can overcome the existing shortcoming of the typical Euler formulae.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of Burger’s equation using a particle swarm optimization;International Journal of Information Technology;2023-06

2. A Metaheuristic Optimization Algorithm for Solving Higher-Order Boundary Value Problems;International Journal of Applied Metaheuristic Computing;2022-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3