Acefylline Derivatives as a New Class of Anticancer Agents: Synthesis, Molecular Docking, and Anticancer, Hemolytic, and Thrombolytic Activities of Acefylline-Triazole Hybrids

Author:

Shahzadi Irum1,Zahoor Ameer Fawad1ORCID,Parveen Bushra1,Rasul Azhar2,Raza Zohaib3,Ahmad Sajjad4,Irfan Ali1ORCID,El-Hiti Gamal A.5ORCID

Affiliation:

1. Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan

2. Department of Zoology, Government College University Faisalabad, Faisalabad 38000, Pakistan

3. Department of Pharmacology, Government College University Faisalabad, Faisalabad 38000, Pakistan

4. Department of Chemistry, University of Engineering and Technology Lahore, Faisalabad Campus, Faisalabad 38000, Lahore, Pakistan

5. Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia

Abstract

The synthesis of novel acefyllines and exploring their biological activities attract researchers due to their medicinal applications. Therefore, the current work reports the successful synthesis of a series of novel acefyllines in good yields, and their structures wereconfirmed using various spectroscopic methods. The synthesized acefyllines demonstrated moderate activity (cell viability = 22.55 ± 0.95% − 57.63 ± 3.65%) compared with the starting drug acefylline (cell viability = 80 ± 3.87%) against the human liver carcinoma (Hep G2 cell line). N-(4-Chlorophenyl)-2-(4-(3,4-dichlorophenyl)-5-((1,3-dimethyl-2,6-dioxo-2,3-dihydro-1H-purin-7(6H)-yl)methyl)-4H-1,2,4-triazol-3-ylthio)acetamide exhibited the most potent activity (cell viability = 22.55 ± 0.95%) among the synthesized derivatives. The in silico modeling studies were performed to predict the binding of the most potent derivative with a binding site that agreed with the results of the antiproliferative activity. The newly synthesized heterocycles exhibited the least hemolytic and moderate clot lysis activity.

Funder

King Saud University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3