Artificial Intelligence-Based Semisupervised Self-Training Algorithm in Pathological Tissue Image Segmentation

Author:

Li Qun1,Liu Linlin2ORCID

Affiliation:

1. School of Electronic Information Engineering, Ningbo Polytechnic, Ningbo 315800, China

2. School of Information and Engineering, China Jiliang University, Hangzhou 310000, Zhejiang, China

Abstract

In the field of medical image processing, due to the differences in tissues, organs, and imaging methods, obtained medical images have significant differences. With the development of intelligence in medicine, an increasing number of computing optimization algorithms based on AI technology have also been applied to the field of medicine. Because the image segmentation algorithm based on the semisupervised self-training algorithm solves initialization class center large randomness problem in the traditional cluster-based image segmentation algorithm, this article aims to integrate the artificial intelligence semisupervised self-training algorithm into the pathological tissue image segmentation problem. An experimental group is designed to collect sample images and the algorithm proposed in this article is used to perform image segmentation to achieve a better visual experience and images. Although there is no general image segmentation theory, many scholars have been committed to applying new concepts and new methods to image segmentation in recent years and combining specific theoretical image segmentation methods has achieved good application results in image segmentation. For example, wavelet analysis, wavelet transform, neural networks, and genetic algorithms can effectively improve the segmentation effect. The results of the Seg cutting method designed in this article show that, in retinal blood vessel segmentation results on a database of healthy people, the sensitivity value is 0.941633, the false-positive rate is 0.952933, the specificity is 0.956787, and the accuracy rate is 0.96182, which are all higher than those in other methods. Image cutting methods such as FNN, CNN, and AWN have addressed the case tissue image cutting problem. Using the Seg cutting method designed in this article to segment the retinal blood vessels on a diabetes patient database, the sensitivity value is 0.8106, the false-positive rate is 0.0511, the specificity is 0.9712, the accuracy is 0.9421, and the false-positive rate is omitted. The false-positive rate is lower than AWN, and other indicators are higher than FNN, CNN, AWN, and other image cutting methods. The application of artificial intelligence-based semisupervised self-training algorithms in pathological tissue image segmentation is realized.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3