Naphthoxy Bounded Ferrocenium Salts as Cationic Photoinitiators for Epoxy Photopolymerization

Author:

Li Zh. Q.1,Li M.1,Li G. L.1,Chen Y.1,Wang X. N.2,Wang T.13

Affiliation:

1. State Key Lab of Chemical Resource Engineering, College of Science, Beijing University of Chemical Technology, Beijing 100029, China

2. College of Material Engineering, Beijing Institute of Fashion Technology, Beijing 100019, China

3. Department of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

To improve the absorption and the bulk of arene ligands, two naphthoxy bounded ferrocenium salts as new cationic photoinitiators, (η6-α-naphthoxybenzene) (η5-cyclopentadienyl) iron hexafluorophosphate (NOFC-1) and (η6-β-naphthoxybenzene) (η5-cyclopentadienyl) iron hexafluorophosphate (NOFC-2), were synthesized, characterized, and studied. NOFC-1 and NOFC-2 were prepared by the reaction of nucleophilic substitution (SNAr) with naphthol and chlorobenzene-cyclopentadienyliron salt. Their activity as cationic photoinitiators was studied using real-time infrared spectroscopy. The results obtained showed that NOFC-1 and NOFC-2 are capable of photoinitiating the cationic polymerization of epoxy monomer directly on irradiation with long-wavelength UV light (365 nm). Comparative studies also demonstrated that they exhibited better efficiency than cyclopentadienyl-Fe-cymene hexafluorophosphate (I-261). When NOFC-1 and NOFC-2 were used to efficiently initiate polymerization of epoxide, both rate of polymerization and final conversion increased using benzoyl peroxide (BPO) as sensitizer. DSC studies showed that NOFC-1 and NOFC-2 photoinitiators in epoxides possess good thermal stability in the absence of light.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3