Synthesis, Antibacterial Evaluation, and QSAR of Caffeic Acid Derivatives

Author:

Araújo Marianna O.1,Freire Pessoa Hilzeth L.2,Lira Andressa B.1ORCID,Castillo Yunierkis P.3,de Sousa Damião P.14ORCID

Affiliation:

1. Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, Brazil

2. Department of Molecular Biology, Federal University of Paraíba, João Pessoa, PB, Brazil

3. Escuela de Ciencias Físicas y Matemáticas, Universidad de Las Américas, Quito, Ecuador

4. Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, PB, Brazil

Abstract

The present study evaluates the antibacterial effects of a set of 16 synthesized caffeic acid ester derivatives against strains of Staphylococcus aureus and Escherichia coli, as well as discusses their structure-activity relationship (SAR). The antibacterial assays were performed using microdilution techniques in 96-well microplates to determine minimal inhibitory concentration (MIC). The results revealed that five of the compounds present strong to optimum antibacterial effect. Of the sixteen ester derivatives evaluated, the products with alkyl side chains, as propyl caffeate (3), butyl caffeate (6), and pentyl caffeate (7), presented the best antibacterial activity with MIC values of around 0.20 μM against Escherichia coli and only butyl caffeate (6) showing the same MIC against Staphylococcus aureus. For products with aryl substituents, the best MIC results against the tested strain of Escherichia coli were 0.23 µM for (di-(4-chlorobenzyl)) caffeate (13) and 0.29 µM for diphenylmethyl caffeate (10) and all were less active against the Staphylococcus aureus strain. Preliminary quantitative structure-activity relationship (QSAR) analyses confirmed that certain structural characteristics, such as a median linear carbon chain and the presence of electron withdrawal substituents at the para position of the aromatic ring, help potentiate antibacterial activity.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3