Synthesis and Electrochemical Capacitor Characterization of Novel Composite Materials with p-Type Conductive Polymer

Author:

Ajami Narges1ORCID

Affiliation:

1. Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran

Abstract

Considering the importance of conductive polymer nanocomposite, the present paper attempts to create a method for increasing the conductivity of poly(o-aminophenol). Nanocomposite MnO2/poly(o-aminophenol) thin film was synthesized by using pulse potential electrodeposition technique on a graphite electrode. In this research, nanoparticles of MnO2 are used after synthesis to prepare polymer nanocomposites in one-step. Appending of MnO2 to polymer matrix increases the current. This current growth could be ascribed to the synergistic MnO2 nanostructure, which presents the superior surface area and smaller particle size that is increasingly acting sites. Morphology or samples composition was investigated by the scanning electron microscope and the UV-Vis method, which clearly indicate the formation of nanocomposites. The findings show that the capacitive behavior of MnO2-poly(o-aminophenol) is superior to poly(o-aminophenol), especially at high potential high temperatures. The results showed that MnO2/poly(o-aminophenol) had a higher level of activity and the electron transfer capability was faster than pure polymer film. The doped MnO2 polymer also has excellent cyclic performance and load discharge features. Additional electrochemical properties of these polymer composites were observed against pure polymer so that capacity of 645 Fg−1 has been designated.

Funder

Payame Noor University

Publisher

Hindawi Limited

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3