Dispersion and Stabilization of Photocatalytic TiO2Nanoparticles in Aqueous Suspension for Coatings Applications

Author:

Othman Siti Hajar12,Abdul Rashid Suraya13,Mohd Ghazi Tinia Idaty1,Abdullah Norhafizah1

Affiliation:

1. Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2. Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

3. Advanced Materials and Nanotechnology Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

To produce titanium dioxide (TiO2) nanoparticle coatings, it is desirable that the nanoparticles are dispersed into a liquid solution and remain stable for a certain period of time. Controlling the dispersion and aggregation of the nanoparticles is crucial to exploit the advantages of the nanometer-sized TiO2particles. In this work, TiO2nanoparticles were dispersed and stabilized in aqueous suspensions using two common dispersants which were polyacrylic acid (PAA) and ammonium polymethacrylate (Darvan C). The effect of parameters such as ultrasonication amplitude and type and amount of dispersants on the dispersibility and stability of the TiO2aqueous suspensions were examined. Rupture followed by erosion was determined to be the main break up mechanisms when ultrasonication was employed. The addition of dispersant was found to produce more dispersed and more stabilized aqueous suspension. 3 wt.% of PAA with average molecular weight (Mw) of 2000 g/mol (PAA 2000) was determined to produce the best and most stable dispersion. The suspensions were then coated on quartz glass, whereby the photocatalytic activity of the coatings was studied via the degradation of formaldehyde gas under UV light. The coatings were demonstrated to be photocatalytically active.

Funder

Universiti Putra Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3