Physical and Mechanical Properties of Transmission Line Galloping under the Action of Freezing and Thawing in Variable Temperature Range

Author:

Ye Yu12ORCID,Li Li12,Xu Xunjian12

Affiliation:

1. State Grid Hunan Electric Power Company Disaster Prevention and Reduction Center, Changsha 410000, Hunan, China

2. State Key Laboratory of Disaster Prevention & Reduction for Power Grid Transmission and Distribution Equipment, Changsha 410000, Hunan, China

Abstract

The western part of our country is mostly alpine regions. The rock and soil have been in a strong natural freeze-thaw environment for a long time, and their physical and mechanical properties are easily affected by external loads and external surroundings. Changes due to the influence of the environment will inevitably produce freeze-thaw cycles, damage and destruction, expansion and fracture, etc., resulting in more stable factors than usual. However, there is a lack of theoretical and practical experience in freeze-thaw rocks, especially freeze-thaw hard rocks. Therefore, studying the physical and mechanical properties and damage characteristics of rocks in alpine regions under freeze-thaw cycles has important significance. This paper uses dacite in the alpine region to carry out a freeze-thaw cycle experiment in a variable temperature range. Freezing and thawing cycle test, uniaxial compression test, triaxial compression test, and electron microscope scanning of the rock in the indoor saturated state were carried out. Combining theory with experimental mechanics, freeze-thaw mechanics, and damage mechanics, we studied freeze-thaw cycle in three variable temperature ranges (−20°C–15°C; −30°C–15°C; −40°C–15°C), along with the physical and mechanical properties and damage characteristics of freeze-thaw dacite in the alpine region under cycling. The damage curve of the final theoretical model gradually approaches 1.0 with the increase of strain during the actual test. The rock sample after the medium failure still has a certain bearing capacity, and the rock sample is often destroyed before it reaches the theoretical failure strain.

Funder

State Grid Science and Technology of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3