Efficient Sample Location Selection for Query Zone in Geo-Social Networks

Author:

Tang Kejian1,Zhan Shaohui1,Zhan Tao1,Zhu Hui2,Zeng Qian3,Zhong Ming3ORCID,Zhu Xiaoyu3,Zhu Yuanyuan3,Li Jianxin4ORCID,Qian Tieyun3

Affiliation:

1. Jiangxi Branch, State Grid Corporation of China, Beijing, Jiangxi, China

2. Beijing Huitong Jincai Information and Technology Company Limited, Beijing, China

3. School of Computer Science, Wuhan University, Wuhan, Hubei, China

4. School of Information Technology, Deakin University, Melbourne, Australia

Abstract

While promoting a business or activity in geo-social networks, the geographical distance between its location and users is critical. Therefore, the problem of Distance-Aware Influence Maximization (DAIM) has been investigated recently. The efficiency of DAIM heavily relies on the sample location selection. Specifically, the online seeding performance is sensitive to the distance between the promoted location and its nearest sample location, and the offline precomputation performance is sensitive to the number of sample locations. However, there is no work to fully study the problem of sample location selection for DAIM in geo-social networks. To do this, we first formalize the problem under a reasonable assumption that a promoted location always adheres to the distribution of users (query zone). Then, we propose two efficient location sampling approaches based on facility location analysis, which is one of the most well-studied areas of operations research, and these two approaches are denoted by Facility Location based Sampling (FLS) and Conditional Facility Location Based Sampling (CFLS), respectively. FLS conducts one-time sample location selection, and CFLS extends the one-time sample location selection to a continuous process, so that an online advertising service can be started immediately without sampling a lot of locations. Our experimental results on two real datasets demonstrate the effectiveness and efficiency of the proposed methods. Specifically, both FLS and CFLS can achieve better performance than the existing sampling methods for the DAIM problem, and CFLS can initialize the online advertising service in a matter of seconds and achieve better objective distance than FLS after sampling a large number of sample locations.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3