Fine-Grained Software Defect Prediction Based on the Method-Call Sequence

Author:

Yang Fengyu12ORCID,Huang Yaxuan2ORCID,Xu Haoming2ORCID,Xiao Peng2ORCID,Zheng Wei2ORCID

Affiliation:

1. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China

2. Software Evaluation Center, Nanchang Hangkong University, Nanchang 330063, Jiangxi, China

Abstract

Currently, software defect-prediction technology is being extensively researched in the design of metrics. However, the research objects are mainly limited to coarse-grained entities such as classes, files, and packages, and there is a wide range of defects that are difficult to predict in actual situations. To further explore the information between sequences of method calls and to learn the code semantics and syntactic structure between methods, we generated a method-call sequence that retains the code context structure information and the token sequence representing semantic information. We embedded the token sequence into the method-call sequence and encoded it into a fixed-length real-valued vector. We then built a defect-prediction model based on the transformer, which maps the code-vector representation containing the method-call sequences to a low-dimensional vector space to generate semantic features and syntactic structure features and also predicts the defect density of the method-call sequence. We conducted experiments on 10 open-source projects using the ELFF dataset. The experimental results show that the method-call sequence-level prediction effect is better than the class-level effect, and the prediction results are more stable than those of the method level. The mean absolute error (MAE) value of our approach was 8% lower than that of the other deep-learning methods.

Funder

Key Research and Development Program of Jiangxi Province

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Development Trend of Code Defect Detection Technology Based on Natural Language Processing;2024 IEEE 13th International Conference on Communication Systems and Network Technologies (CSNT);2024-04-06

2. Heterogeneous Cross-Project Defect Prediction Using Encoder Networks and Transfer Learning;IEEE Access;2024

3. Explainable Software Defect Prediction from Cross Company Project Metrics using Machine Learning;2023 7th International Conference on Intelligent Computing and Control Systems (ICICCS);2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3