Construction and Evaluation of Prognosis Prediction Model for Patients with Brain Contusion and Laceration Based on Machine Learning

Author:

Li Shaoquan1ORCID,Bai Limei1ORCID,Zheng Zhixia1ORCID

Affiliation:

1. Department of Neurosurgery, Cangzhou Central Hospital, Hebei 061000, China

Abstract

Objective. Finding valuable risk factors for the prognosis of brain contusion and laceration can help patients understand the condition and improve the prognosis. This study is aimed at analyzing the risk factors of poor prognosis in patients with brain contusion after the operation. Methods. A total of 136 patients with cerebral contusion and laceration combined with cerebral hernia treated by neurosurgical craniotomy in our hospital were retrospectively selected and divided into a training set ( n = 95 ) and a test set ( n = 41 ) by the 10-fold crossover method. Logistic regression and back-propagation neural network prediction models were established to predict poor prognosis factors. The receiver operating characteristic curve (ROC) and the calibration curve were used to verify the differentiation and consistency of the prediction model. Results. Based on logistic regression and back-propagation neural network prediction models, GCS score 8 on admission, blood loss 30  ml, mannitol 2 weeks, anticoagulants before admission, and surgical treatment are the risk factors that affect the poor prognosis of patients with a cerebral contusion after the operation. The area under the ROC was 0.816 (95% CI 0.705~0.926) and 0.819 (95% CI 0.708~0.931), respectively. Conclusion. The prediction model based on the risk factors that affect the poor prognosis of patients with brain contusion and laceration has good discrimination and accuracy.

Funder

Hebei Medical Science Research Project Plan

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3