Affiliation:
1. Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
Abstract
This investigation suggests the applicability of Delftia tsuruhatensis biomass for the removal of Zn(II) from the aqueous environment. Twenty-three zinc-resistant bacterial strains were isolated from contaminated rhizosphere soils. Selectively, the bacterium strain SA-101 was selected as the most zinc-resistant and identified by 16S rRNA sequencing as Delftia tsuruhatensis SA-101. D. tsuruhatensis SA-101 has been assigned the accession number MW629784 in the GenBank database. The optimal pH and reaction contact time for Zn(II) removal by D. tsuruhatensis SA-101 were 6.0 and 30 min, respectively. Moreover, the equilibrium and kinetic models have been applied to the Zn(II) biosorption process. The Zn(II) concentration was estimated using atomic absorption spectroscopy. The qmax for bioadsorptive Zn(II) removal was calculated to be 90.91 ± 0.36 mg/g. The biosorption equilibrium was well fitted with the Freundlich model and the pseudo-second-order kinetic model. So, using the biomass of D. tsuruhatensis SA-101 as a biosorbent of Zn(II) from industrial wastewater represents a promising and viable alternative to chemical treatment from an environmental and economic view.
Funder
Princess Nourah Bint Abdulrahman University
Subject
Earth-Surface Processes,Soil Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献