Upbeat: Augmented Reality-Guided Dancing for Prosthetic Rehabilitation of Upper Limb Amputees

Author:

Melero Marina12ORCID,Hou Annie2,Cheng Emily2,Tayade Amogh2,Lee Sing Chun2,Unberath Mathias2,Navab Nassir2

Affiliation:

1. Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK

2. Department of Computer Science, Johns Hopkins University, Baltimore 21218-2683, USA

Abstract

Unsuccessful rehabilitation therapy is a widespread issue amongst modern day amputees. Of the estimated 10 million amputees worldwide, 3 million of whom are upper limb amputees, a large majority are discontent and experience rejection with their current prosthesis during activities of daily living (ADL). Here we introduce Upbeat, an augmented reality (AR) dance game designed to improve rehabilitation therapies in upper limb amputees. In Upbeat, the patient is instructed to follow a virtual dance instructor, performing choreographed dance movements containing hand gestures involved in upper limb rehabilitation therapy. The patient’s position is then tracked using a Microsoft Kinect sensor while the hand gestures are analyzed using EMG data collected from a Myo Armband. Additionally, a gamified score is calculated based on how many gestures and movements were correctly performed. Upon completion of the game, a diagnostic summary of the results is shown in the form of a graph summarizing the collected EMG data, as well as with a video displaying an augmented visualization of the patient’s upper arm muscle activity during gameplay. By gamifying the rehabilitation process, Upbeat has the potential to improve therapy on upper limb amputees by enabling the start of rehabilitation immediately after trauma, providing personalized feedback which professionals can utilize to accurately assess patient’s progress, and increasing patient excitement, therefore increasing patient willingness to complete rehabilitation. This paper is concerned with the description and evaluation of our prototypic implementation of Upbeat that will serve as the basis for conducting clinical studies to evaluate its impact on rehabilitation.

Funder

Stryker

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3