The Lambert Way to Gaussianize Heavy-Tailed Data with the Inverse of Tukey’shTransformation as a Special Case

Author:

Goerg Georg M.1

Affiliation:

1. Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Abstract

I present a parametric, bijective transformation to generate heavy tail versions of arbitrary random variables. The tail behavior of thisheavy tail Lambert  W × FXrandom variable depends on a tail parameterδ0: forδ=0,YX, forδ>0 Yhas heavier tails thanX. ForXbeing Gaussian it reduces to Tukey’shdistribution. The Lambert W function provides an explicit inverse transformation, which can thus remove heavy tails from observed data. It also provides closed-form expressions for the cumulative distribution (cdf) and probability density function (pdf). As a special case, these yield analytic expression for Tukey’shpdf and cdf. Parameters can be estimated by maximum likelihood and applications to S&P 500 log-returns demonstrate the usefulness of the presented methodology. The R packageLambertWimplements most of the introduced methodology and is publicly available onCRAN.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3