Affiliation:
1. School of Instrumentation Science & Opto-Electronics Engineering, Beihang University, Beijing 100191, China
2. National Institute of Metrology, Beijing 100029, China
Abstract
This paper proposes a novel method for stereo matching which is based on image features to produce a dense disparity map through two different expansion phases. It can find denser point correspondences than those of the existing seed-growing algorithms, and it has a good performance in short and wide baseline situations. This method supposes that all pixel coordinates in each image segment corresponding to a 3D surface separately satisfy projective geometry of 1D in horizontal axis. Firstly, a state-of-the-art method of feature matching is used to obtain sparse support points and an image segmentation-based prior is employed to assist the first region outspread. Secondly, the first-step expansion is to find more feature correspondences in the uniform region via initial support points, which is based on the invariant cross ratio in 1D projective transformation. In order to find enough point correspondences, we use a regular seed-growing algorithm as the second-step expansion and produce a quasi-dense disparity map. Finally, two different methods are used to obtain dense disparity map from quasi-dense pixel correspondences. Experimental results show the effectiveness of our method.
Subject
General Engineering,General Mathematics
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献