Multivisit Drone-Vehicle Routing Problem with Simultaneous Pickup and Delivery considering No-Fly Zones

Author:

Liu Yan-Qiu1,Han Jing1ORCID,Zhang Ying1,Li Yan2,Jiang Tao1

Affiliation:

1. School of Management, Shenyang University of Technology, Shenyang 110870, China

2. School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China

Abstract

The employment of drones for the distribution of goods represents a significant avenue for addressing logistical challenges at the end of the supply chain. The truck-drone cooperative delivery model overcomes drone limitations such as limited capacity and endurance and has emerged as a crucial mode of drone participation in logistics delivery. This delivery model effectively reduces delivery costs and shortens delivery times. Herein, we examine a variant of the truck-drone routing problem, which encompasses the strategic deployment and routing of multiple fleets of trucks, each equipped with an auxiliary drone. The objective is to fulfill all the pickup and delivery demands of a designated customer base while minimizing the overall route cost. Within this problem domain, drones are authorized to serve multiple customers within their capacity and endurance limits, providing both pickup and delivery services during each trip. However, the utilization of drones for servicing all customers is impeded by the existence of no-fly zones that have been implemented in numerous cities worldwide. These prescribed no-fly zones cause significant challenges when attempting to optimize the routing of truck-drone operations. Thus, this study constructs a mixed integer linear programming (MILP) model for the path optimization problem of joint service of trucks and drones considering no-fly zones and simultaneous pickup and delivery. Given the intricacy of the MILP model, we propose a two-stage heuristic algorithm based on a simulated annealing approach, combined with strategies for rectifying infeasible solutions and expediting algorithmic processes. During the phase of computational experimentation, we explore the advantages derived from enabling drones to serve multiple customers and assess the effectiveness of the proposed model and two-stage heuristic algorithm. Finally, sensitivity analysis is conducted on two key parameters.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

Reference56 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3