Effect of Carbon Dioxide on Bispectral Index of EEG under Intravenous Target-Controlled Anesthesia Based on Intelligent Medical Treatment

Author:

Li Aizhi1,He Qunhui1,Li Rulin2,Chen Yu1,Xu Weiwei1ORCID

Affiliation:

1. Yantai Yuhuangding Hospital, Anesthesiology Department, 264000 Shan Dong, China

2. Yantai Zhifu Hospital, Anesthesiology Department, 264000 Shan Dong, China

Abstract

Laparoscopic surgery has the advantages of less trauma and quick recovery, and it is more and more favored by surgeons and patients in clinical practice. However, the impact of carbon dioxide pneumoperitoneum on the body during laparoscopic surgery has attracted the attention of many scholars. Pneumoperitoneum can cause increased cerebral blood flow and increased intracranial pressure, cerebral metabolic rate is highly correlated with blood carbon dioxide partial pressure, and cerebral metabolism without cardiopulmonary bypass is linearly correlated with the depth of anesthesia. Electroencephalographic (EEG) bispectral index (BIS) is a signal analysis method, which can directly measure the effect of drugs on the cerebral cortex and reflect the depth of anesthesia. Based on this, this study takes smart medical treatment as the background and uses the improved BP neural network as a tool to explore the effect of carbon dioxide on EEG bispectral index under intravenous target-controlled anesthesia. The main purpose is to observe the correlation between arterial blood carbon dioxide partial pressure and EEG bispectral index under propofol target-controlled anesthesia during retroperitoneal laparoscopic surgery. The experimental results show that the model proposed in this study can efficiently and accurately obtain the size of the influencing factors, which provides a clinical basis for the anesthesia management and anesthesia depth regulation of carbon dioxide pneumoperitoneum laparoscopic surgery.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3