Vitamin D3 Supplementation Attenuates Surgery-Induced Neuroinflammation and Cognitive Impairment by Regulating NLRP3 Inflammasome in Mice

Author:

Jiang Jingyan1ORCID,Huang Xin1ORCID,Gao Xiang1ORCID,Yu Shenghui1ORCID

Affiliation:

1. Department of Anesthesiology, The Affiliated People’s Hospital of Ningbo University, Ningbo 315040, China

Abstract

Neuroinflammation plays a dominant role in the progression of postoperative cognitive dysfunction (POCD). Vitamin D has been known to have important regulatory functions in inflammation and immune response. The NOD-like receptor protein 3 (NLRP3) is an essential inflammasome in the inflammatory response and could be activated by anesthesia and surgery. In this study, male C57BL/6 mice aged 14–16 months were given VD3 for 14 days straight before having an open tibial fracture surgery. The animals were either sacrificed to obtain the hippocampus or tested in a Morris water maze test. Western blot was employed to estimate the levels of NLRP3, ASC, and caspase-1, immunohistochemistry was used to identify microglial activation, and an enzyme-linked immunosorbent assay was used to measure the expression of IL-18 and IL-1β, while using the corresponding assay kits to assess ROS and MDA levels to reflect the oxidative stress status. We showed that VD3 pretreatment significantly improved surgery-induced memory and cognitive dysfunctions in aged mice, which was linked to the inactivation of the NLRP3 inflammasome and the inhibition of neuroinflammation. This finding provided a novel preventative strategy for clinically reducing postoperative cognitive impairment in elderly surgical patients. This study has some limitations. Gender differences in the effects of VD3 were not considered, and only male mice were used. Additionally, VD3 was given as a preventative measure; however, it is unknown whether it has any therapeutic benefits for POCD mice. This trial is registered with ChiCTR-ROC-17010610.

Funder

Medical Scientific Research Foundation of Zhejiang Province, China

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3