Hybrid Approach Named HUAPO Technique to Guide the Lander Based on the Landing Trajectory Generation for Unmanned Lunar Mission

Author:

Latif Shaikh Abdul1ORCID,Mehedi Ibrahim M.23ORCID,Iskanderani Ahmed I. M.3ORCID,Vellingiri Mahendiran T.3ORCID,Jannat Rahtul4ORCID

Affiliation:

1. Department of Nuclear Engineering, King Abdulaziz University, Jeddah, Saudi Arabia

2. Center of Research Excellence in Intelligent Engineering Systems (CEIES), King Abdulaziz University, Jeddah 21589, Saudi Arabia

3. Department of Electrical and Computer Engineering (ECE), King Abdulaziz University, Jeddah 21589, Saudi Arabia

4. Department of Electrical & Electronic Engineering (EEE), BRAC University, Dhaka, Bangladesh

Abstract

This manuscript proposes a hybrid method for landing trajectory generation of unmanned lunar mission. The proposed hybrid control scheme is the joint execution of the human urbanization algorithm (HUA) and political optimizer (PO) with radial basis functional neural network (RBFNN); hence it is named as HUA-PORFNN method. The HUA is a metaheuristic method, and it is used to solve several optimization issues and several nature-inspired methods to enhance the convergence speed with quality. On the other hand, multiple-phased political processes inspire the PO. The work aims to guide the lander with minimal fuel consumption from the initial to the final stage, thus minimizing the lunar soft landing issues based on the given cost of operation. Here, the HUAPO method is implemented to overcome thrust discontinuities, checkpoint constraints are suggested for connecting multi-landing phases, angular attitude rate is modeled to obtain radical change rid, and safeguards are enforced to deflect collision along with obstacles. Moreover, first, the issues have been resolved according to the proposed HUAPO method. Here, energy trajectories with 3 terminal processes are deemed. Additionally, the proposed HUAPO method is executed on MATLAB/Simulink site, and the performance of the proposed method is compared with other methods.

Funder

King Abdulaziz University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3