Observe Athlete’s Ankle Pain and Ankle Joint Muscle Characteristics Based on Microscope Images

Author:

Li Mingzhi1ORCID,Sun Lina1ORCID

Affiliation:

1. Sports Department, North China Institute of Science and Technology, Langfang 065201 Hebei, China

Abstract

Objective. To observe the characteristics of ankle pain and ankle joint muscle by microscope. Methods. In a sports university, 15 athletes above grade 2 were randomly selected as the experimental group, and 15 nonathletes were randomly selected as the control group. The experiment mainly included foot shape test, standard scaphoid height test, ankle range of motion test, ankle muscle emg test, and other experimental procedures. Medical microscopic image processing is a new technology developed in the past thirty years, which has brought great progress for mankind to understand and transform nature. Among them, the image processing and recognition of tumor cell microscopic images are one of the research focuses on the use of computers to process and recognize medical images. Results. In the test of ankle range of motion, when the angular velocity was the same as 60°/s, compared with the control group, the difference value of bilateral flexor peak moment in the experimental group was large, and the difference between the two groups was significant ( P < 0.05 ), with statistical significance. As the angular velocity dropped from 240°/s to 60°/s, 30 members of the experimental group and control group also experienced a decrease in the bilateral ankle isokyclic muscles, reflecting their lack of ankle strength. On the other hand, the muscle strength of the ankle joint in the experimental group was relatively small, and the difference between the two groups was significant ( P < 0.05 ). During the exercise, some members of the experimental group suffered from ankle pain, which resulted in insufficient strength of the muscles of the ankle joint, resulting in the interruption of the experiment. In the emg test of ankle muscles, the effective discharge values of preexcitation current of tibial anterior muscle before and after exercise were 104.6 ± 26.5 and 129.2 ± 38.1 , respectively, with significant difference and statistical significance. In the foot morphology test and the standard scaphoid height test, the difference between the two groups was not significant ( P > 0.05 ), and there was no statistical significance. Conclusion. Microscope based on athlete’s foot and ankle pain and ankle muscle characteristics to improve the accuracy of the observation, with the help of a microscope, you can see the details of a doctor are invisible to the naked eye and can record the relevant data in time in order to observe the late, for athlete’s foot and ankle pain relief and enhanced ankle muscles provide data support.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference16 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3