Numerical Simulation of a Novel Hydrocyclone Mixer Structurally Optimized for Mixing Performance and Energy Efficiency

Author:

Li Jiale,Dai LiORCID,Li Long,Zhou Penghui,Xu Dingliang,Zeng Lin

Abstract

Energy efficiency of coal‐water slurry mixing determines its application and transportation efficiency. This study compares the hydrodynamic characteristics and mixing performance of five different configurations of hydrocyclone mixers under turbulent flow conditions. Numerical calculations were used to investigate the velocity, pressure, and concentration fields of the mixer. Attempts were made to decrease the tangential inlet size and to design indentation structure to control the velocity and pressure fields inside the hydrocyclone mixer, thereby increasing the degree of mixing (DOM) and reducing mixing energy cost (MEC). The findings indicate that better mixing and dispersion can be achieved while reducing energy costs by designing the indentation structure and decreasing the size of the tangential inlet and outlet. It offers a reliable solution for uniformly mixing and dispersing coal‐water slurry with organic waste liquids and other highly concentrated fuels.

Funder

Chongqing University of Technology

Chongqing Municipal Education Commission

Chongqing Postdoctoral Science Foundation

Publisher

Wiley

Reference28 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3