Covarying Shell Growth Parameters and the Regulation of Shell Shape in Marine Bivalves: A Case Study on Tellinoidea

Author:

Béguinot Jean12

Affiliation:

1. Société d’Histoire Naturelle, 12 rue des Pyrénées, 71200 Le Creusot, France

2. Biogéosciences, Université de Bourgogne, 21000 Dijon, France

Abstract

Specific parameters characterising shell shape may arguably have a significant role in the adaptation of bivalve molluscs to their particular environments. Yet, suchfunctionally relevantshape parameters (shell outline elongation, dissymmetry, and ventral convexity) are not those parameters that the animal may directly control. Rather than shell shape, the animal regulates shell growth. Accordingly, an alternative,growth-baseddescription of shell-shape is best fitted to understand how the animal may control the achieved shell shape. The key point is, in practice, to bring out the link between those two alternative modes of shell-shape descriptions, that is, to derive the set of equations which connects thegrowth-basedshell-shape parameters to thefunctionally relevantshell-shape parameters. Thus, a preliminary object of this note is toderivethis set of equations as a tool for further investigations. A second object of this work is to provide an illustrative example of implementation of this tool. I report on an unexpected negative covariance between growth-based parameters and show how this covariance results in a severe limitation of the range of interspecific variability of the degree of ventral convexity of the shell outline within the superfamily Tellinoidea. Hypotheses are proposed regarding the constraints possibly at the origin of this limitation of interspecific variability.

Publisher

Hindawi Limited

Subject

Animal Science and Zoology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3