Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage

Author:

Yang Soo Young1ORCID,Park Jin-Sung1ORCID,Koo Hye Young2ORCID,Kang Yun Chan1ORCID

Affiliation:

1. Department of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea

2. Department of Metal Powder, Korea Institute of Materials Science, 797 Changwon-daero, Changwon, Gyeongnam 51508, Republic of Korea

Abstract

Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the formation of highly conductive graphitic carbon matrix. Numerous hollow metal oxide nanospheres formed simultaneously during the oxidation process via nanoscale Kirkendall diffusion are anchored onto the carbonaceous matrix, effectively reinforcing the structural integrity by alleviating volume changes and reducing lithium-ion diffusion lengths. The synergistic effect of combining hollow metal oxide nanospheres with high theoretical capacity with conductive carbon matrix led to accelerated electrochemical kinetics, resulting in high capacity at high charging rate. In addition, trapping the hollow metal oxide nanospheres inside hollow carbon nanospheres could effectively alleviate the volume changes, which led to high structural stability. When applied as LIB anodes, the microspheres exhibit a capacity of 411 mA h g−1 after 2500 cycles at 10.0 A g−1, with ~80% capacity retention. The anode exhibits a high capacity of 274 mA h g−1 at an extremely high current density of 50.0 A g−1, thus demonstrating the structural merits of the microspheres.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3