Feature Extraction Method Based on Sparse Autoencoder for Air Traffic Management System Security Situation Awareness

Author:

Wu Zhijun1ORCID,Bai Zhuoning1ORCID,Zhang Lizhe12ORCID,Wang Kenian12ORCID

Affiliation:

1. School of Safety Science and Engineering, Civil Aviation University of China, Tianjin 300300, China

2. Key Laboratory of Civil Aircraft Airworthiness Technology, Civil Aviation University of China, Tianjin 300300, China

Abstract

In wide-area distributed scenarios, it is particularly important to carry out information security situational awareness for the air traffic management (ATM) system with integrated air-ground structure. The operation data of the communication, navigation and surveillance (CNS) equipment of ATM system have the characteristics of multi-dimension, complexity, and strong correlation. In the process of situation awareness feature extraction, there are problems such as poor model accuracy, weak feature expression ability, and low classification performance. A feature association algorithm is designed to solve the above problems. Based on this algorithm, a deep-related sparse autoencoder (DRSAE) model based on improved sparse autoencoder is established. In DRSAE model, L1 regularization and Kullback–Leibler divergence (KLD) sparsity terms are used to penalize the parameters of the encoder network, and the quantity of hidden layers is increased to allow the model to optimize the global encoder network by iteratively training a single encoder. Moreover, the proposed DRSAE model and other feature extraction models such as principal component analysis (PCA), autoencoder (AE), and sparse autoencoder (SAE) are compared and evaluated by using the support vector machine (SVM) classifier. Compared with other feature extraction models, it is found that the proposed DRSAE model has good robustness in feature extraction of ATM system, and the obtained features have strong expression ability, which enhances the classification performance of the model and is convenient for situation awareness.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference30 articles.

1. A systems engineering approach to appraise cybersecurity risks of CNS/ATM and avionics systems;L. Bogoda

2. Network security situation awareness model based on threat intelligence;H. Zhang;Journal of Communications,2021

3. A malicious mining code detection method based on multi-features fusion;S. Li;IEEE Transactions on Network Science and Engineering,2022

4. Anomaly detection in ATM-grade software defined networks;P. Lellek

5. Control consistency as a management tool: the identification of systematic security control weaknesses in air traffic management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3