A Study of Deep Learning Neural Network Algorithms and Genetic Algorithms for FJSP

Author:

Shang Xiaofeng1ORCID

Affiliation:

1. School of Management, City Institute, Dalian University of Technology, Dalian 116600, China

Abstract

Flexible job-shop scheduling problem (FJSP) is a new research hotspot in the field of production scheduling. To solve the multiobjective FJSP problem, the production of flexible job shop can run normally and quickly. This research takes into account various characteristics of FJSP problems, such as the need to ensure the continuity and stability of processing, the existence of multiple objectives in the whole process, and the constant complexity of changes. It starts with deep learning neural networks and genetic algorithms. Long short-term memory (LSTM) and convolutional neural networks (CNN) are combined in deep learning neural networks. The new improved algorithm is based on the combination of deep learning neural networks LSTM and CNN with genetic algorithm (GA), namely, CNN-LSTM-GA algorithm. Simulation results showed that the accuracy of the CNN-LSTM-GA algorithm was between 85.2% and 95.3% in the test set. In the verification set, the minimum accuracy of the CNN-LSTM-GA algorithm was 84.6%, both of which were higher than the maximum accuracy of the other two algorithms. In the FJSP simulation experiment, the AUC value of the CNN-LSTM-GA algorithm was 0.92. After 40 iterations, the F1 value of the CNN-LSTM-GA algorithm remained above 0.8, which was significantly higher than the other two algorithms. CNN-LSTM-GA is superior to the other two algorithms in terms of prediction accuracy and overall performance of FJSP. It is more suitable for solving the discrete manufacturing job scheduling problem with FJSP characteristics. This study significantly raises the utilisation rate of the assembly shop’s equipment, optimises the scheduling of FJSP, and fully utilises each processing device’s versatile characteristics, which are quite useful for the production processes of domestic vehicle manufacturing companies.

Publisher

Hindawi Limited

Subject

Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3