Comparative Application of Time-Frequency Methods on Strong Motion Signals

Author:

Ashtari Jafari Mohammad1ORCID

Affiliation:

1. Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

Real-world physical signals are commonly nonstationary, and their frequency details change with time and do not remain constant. Fourier transform that uses infinite sine/cosine waves as basis functions represents frequency constituents of signals but does not show the variations of the signal frequency contents over time. Multiresolution demonstration of the time-frequency domain may be achieved by the techniques that can support adjustable resolution in time and frequency. Earthquake strong motion signals are nonstationary and indicate time-varying frequency content due to the scattering from the source to the site. In this paper, we applied short-time Fourier transform, S-transform, continuous wavelet transform, fast discrete wavelet transform, synchrosqueezing transform, synchroextracting transform, continuous wavelet synchrosqueezing, filter bank synchrosqueezing, empirical mode decomposition, and Fourier decomposition methods on the near-source strong motion signals from the 7 May 2020 Mosha-Iran earthquake to study and compare the frequency content of this event estimated by these methods. According to the results that are examined by Renyi entropy and relative error, synchroextracting performed better in terms of energy concentration, and the Fourier decomposition method revealed the lowest difference between the original and reconstructed records.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3