Affiliation:
1. Institute of Geophysics, University of Tehran, Tehran, Iran
Abstract
Real-world physical signals are commonly nonstationary, and their frequency details change with time and do not remain constant. Fourier transform that uses infinite sine/cosine waves as basis functions represents frequency constituents of signals but does not show the variations of the signal frequency contents over time. Multiresolution demonstration of the time-frequency domain may be achieved by the techniques that can support adjustable resolution in time and frequency. Earthquake strong motion signals are nonstationary and indicate time-varying frequency content due to the scattering from the source to the site. In this paper, we applied short-time Fourier transform, S-transform, continuous wavelet transform, fast discrete wavelet transform, synchrosqueezing transform, synchroextracting transform, continuous wavelet synchrosqueezing, filter bank synchrosqueezing, empirical mode decomposition, and Fourier decomposition methods on the near-source strong motion signals from the 7 May 2020 Mosha-Iran earthquake to study and compare the frequency content of this event estimated by these methods. According to the results that are examined by Renyi entropy and relative error, synchroextracting performed better in terms of energy concentration, and the Fourier decomposition method revealed the lowest difference between the original and reconstructed records.
Subject
Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献