Internet of Things (IoT)-Enabled Unmanned Aerial Vehicles for the Inspection of Construction Sites: A Vision and Future Directions

Author:

Israr Ambar1,Abro Ghulam E. Mustafa2ORCID,Sadiq Ali Khan M.3,Farhan Muhammad4ORCID,Bin Mohd Zulkifli Saif ul Azrin2

Affiliation:

1. Electronic Engineering Department, Sir Syed University of Engineering & Technology, Karachi, Pakistan

2. Department of Electrical and Electronic Engineering, University Teknologi Petronas, Seri Iskandar Perak 32610, Malaysia

3. Department of Computer Science, University of Karachi, Karachi, Pakistan

4. Department of Electrical Engineering and Technology, Government College University, Faisalabad, Pakistan

Abstract

Today people are witnessing the rapid evolvement in every area. This is because of the emerging trends in communication technology and autonomous unmanned vehicles. These trends have led us towards the high standards of health, energy, transportation, monitoring, and surveillance of huge domestic and industrial projects. Thus, this review paper presents the integration of the latest trend in communication technology, i.e., Internet of things (IoT) with unmanned aerial vehicles (UAVs). This manuscript not only reviews the use of IoT-enabled unmanned aerial vehicles for inspecting the several construction sites but also emphasizes the utilization of such IoT-enabled autonomous aerial vehicles for ensuring the health and safety measures at the site. It discusses the major limitations and shortcomings of state-of-the-art techniques for the same purpose, i.e., optimization issues in path planning, lightweight artificial intelligence (AI) and computer vision algorithms, coordination in communication using IoT, and scalability of IoT network. Thus, this paper shall help the reader to explore different open research problems in-depth.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3