Optimization of the Structural Parameters and the Teeth Shape of Slip in Drill Rig

Author:

Zhang Hua1ORCID,Zhu Qianwei1,Gao Bin2

Affiliation:

1. School of Mechanical Engineering, Nantong University, Nantong, Jiangsu 226019, China

2. Wuxi Amman Engineering Machinery Co., Ltd., Wuxi, Jiangsu 214000, China

Abstract

In order to improve the performance of slip and reduce the extrusion damage of the drill pipe in the drill rig, the optimization of structural parameters and teeth shape of the slip while clamping the drill pipe had been researched in this article. On the macroscale, the structural parameters of the slip had been optimized with response surface method (RSM) and Multiobjective Genetic Algorithm (MOGA). The optimized result showed that the single weight of the slip had been reduced from 3.99 kg to 2.91 kg and the maximum deformation of the drill pipe was reduced from 3.75 mm on both sides to 2.56 mm on both sides. On the microscale, a mathematical model for the single slip teeth while clamping the drill pipe had been established to give a detailed description to calculate the equivalent coefficient of friction and provide the relationship between the frictional torque with the allowable compression strength. In addition, the finite element model that had been set up by ABAQUS was used to verify the mathematical model, and the comparison of results had shown the accuracy of the mathematical model of the slip teeth while clamping the drill pipe. According to the mathematical model of the slip teeth in the drill rig, while clamping the drill pipe, the optimal shape of the slip teeth in the drill rig was achieved under the following condition: the slope of the slip teeth θ is 60°, the top width of the slip teeth w h is 1.5 mm, and the depth of the slip teeth clamping the drill pipe d is 0.5 mm. The equivalent coefficient of friction f v can be increased from 1.73 to 2.06, and the optimal result f v increases 11.3%.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3