A Novel Machine Learning-Based Systolic Blood Pressure Predicting Model

Author:

Zheng Jiao1ORCID,Yu Zhengyu2ORCID

Affiliation:

1. Drug Clinical Trial Institution Department, Hunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410000, China

2. Faculty of Engineering and IT, University of Technology, Sydney, Sydney, NSW 2007, Australia

Abstract

Blood pressure (BP) is a vital biomedical feature for diagnosing hypertension and cardiovascular diseases. Traditionally, it is measured by cuff-based equipment, e.g., sphygmomanometer; the measurement is discontinued and uncomfortable. A cuff-less method based on different signals, electrocardiogram (ECG) and photoplethysmography (PPG), is proposed recently. However, this method is costly and inconvenient due to the collections of multisensors. In this paper, a novel machine learning-based systolic blood pressure (SBP) predicting model is proposed. The model was evaluated by clinical and lifestyle features (gender, marital status, smoking status, age, weight, etc.). Different machine learning algorithms and different percentage of training, validation, and testing were evaluated to optimize the model accuracy. Results were validated to increase the accuracy and robustness of the model. The performance of our model met both the level of grade A (British Hypertension Society (BHS) standard) and the American National Standard from the Association for the Advancement of Medical Instrumentation (AAMI) for SBP estimation.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3