Dendrobium Mixture Ameliorates Diabetic Nephropathy in db/db Mice by Regulating the TGF-β1/Smads Signaling Pathway

Author:

Chen Yong1ORCID,Lin Xiaohui1,Zheng Yanfang2,Yu Wenzhen1,Lin Fan1,Zhang Jieping1ORCID

Affiliation:

1. College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

2. College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, China

Abstract

Dendrobium mixture (DMix) is an effective treatment for diabetic nephropathy (DN), but the molecular mechanism underlying its action remains unclear. In this study, we investigated whether DMix regulates the transforming growth factor-β1 (TGF-β1)/Smads signal transduction pathway. Twenty-four db/db mice were randomly divided into three groups: the model, DMix, and gliquidone groups, while eight db/m mice were selected as the normal control group. The drug was administered by continuous gavage for 8 weeks. Body weight (BW), kidney weight (KW), kidney index, fasting blood glucose (FBG), blood lipid, 24-hour urinary albumin excretion rate, blood urea nitrogen, and serum creatinine levels were measured. Pathological changes in the renal tissue were observed under a light microscope. Real-time quantitative PCR and immunohistochemical staining were used to detect the mRNA and protein expression levels of TGF-β1 and alpha-smooth muscle actin (α-SMA), respectively, in renal tissues. TGF-β1, Smad2, p-Smad2, Smad3, p-Smad3, and α-SMA expression levels were measured using western blotting. The results showed that DMix significantly reduced the FBG level, BW, KW, and blood lipid level and improved renal function in db/db mice. Histopathology showed that DMix alleviated glomerular mesangial cell proliferation and renal interstitial fibrosis in db/db mice. Additionally, DMix reduced the protein and mRNA expression levels of TGF-β1 and α-SMA and inhibited Smad2 and Smad3 phosphorylation. We conclude that DMix may inhibit renal fibrosis and delay the progression of DN by regulating the TGF-β1/Smads signaling pathway.

Funder

Fujian University of Traditional Chinese Medicine’s Research Platform Management Project

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3