Affiliation:
1. College of Bioresources Chemical and Materials Engineering of Shaanxi University of Science and Technology, Xi’an 710021, China
Abstract
The traditional real-time data scheduling method ignores the optimization process of job data that leads to delayed delivery, high inventory cost, and low utilization rate of equipment. This paper proposes a novel real-time data scheduling method based on deep learning and an improved fuzzy algorithm for flexible operations in the papermaking workshop. The algorithm is divided into three parts: the first part describes the flexible job shop scheduling problem; the second part constructs the fuzzy scheduling model of flexible job data in papermaking workshop; and finally the third part uses a genetic algorithm to obtain the optimal solution of fuzzy scheduling of flexible job data in papermaking workshop. The results show that the optimal solution is obtained in 48 seconds at the 23rd attempt (iteration) under the application of the proposed method. This result is much better than the three traditional scheduling methods with which we compared our results. Hence, this paper improves the work efficiency and quality of papermaking workshop and reduces the operating cost of the papermaking enterprise.
Funder
Xianyang Vocational and Technical College
Subject
Computer Networks and Communications,Computer Science Applications
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献