Towards a Computational Fluid Dynamics-Based Fuzzy Logic Controller of the Optimum Windcatcher Internal Design for Efficient Natural Ventilation in Buildings

Author:

Balabel Ashraf1ORCID,Faizan Mohammad2,Alzaed Ali3

Affiliation:

1. Mechanical Engineering Department, Taif University, Taif, Saudi Arabia

2. Mechanical Engineering Department, Aligarh Muslim University, Aligarh, India

3. Architectural Engineering Department, Taif University, Taif, Saudi Arabia

Abstract

Recently, increased attention has been given to the coupling of computational fluid dynamics (CFD) with the fuzzy logic control system for obtaining the optimum prediction of many complex engineering problems. The data provided to the fuzzy system can be obtained from the accurate computational fluid dynamics of such engineering problems. Windcatcher performance to achieve thermal comfort conditions in buildings, especially in hot climate regions, is considered as one such complex problem. Windcatchers can be used as natural ventilation and passive cooling systems in arid and windy regions in Saudi Arabia. Such systems can be considered as the optimum solution for energy-saving and obtaining thermal comfort in residential buildings in such regions. In the present paper, three-dimensional numerical simulations for a newly-developed windcatcher model have been performed using ANSYS FLUENT-14 software. The adopted numerical algorithm is first validated against previous experimental measurements for pressure coefficient distribution. Different turbulence models have been firstly applied in the numerical simulations, namely, standard k-epsilon model (1st and 2nd order), standard Wilcox k-omega model (1st and 2nd order), and SST k-omega model. In order to assess the accuracy of each turbulence model in obtaining the performance of the proposed model of the windcatcher system, it is found that the second order k-epsilon turbulence model gave the best results when compared with the previous experimental measurements. A new windcatcher internal design is proposed to enhance the ventilation performance. The fluid dynamics characteristics of the proposed model are presented, and the ventilation performance of the present model is estimated. The numerical velocity profiles showed good agreement with the experimental measurements for the turbulence model. The obtained results have shown that the second order k-epsilon turbulence can predict the different important parameters of the windcatcher model. Moreover, the coupling algorithm of CFD and the fuzzy system for obtaining the optimum operating parameters of the windcatcher design are described.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3