Effects of Partial Supporting Pile Removal from Deep Foundation Pits by Shallow Excavation Method in Loess Areas

Author:

Zheng Yunxin1ORCID,Hu Zhiping12ORCID,Ren Xiang1,Wang Rui1ORCID,Zhang Enxiang3,Long Zhao3

Affiliation:

1. School of Civil Engineering, Chang’an University, Xi’an 710061, China

2. Institute of Underground Structure and Engineering, Chang’an University, Xi’an 710061, China

3. Gansu CSCEC Municipal Engineering Investigation and Design Institute Co. LTD., Lanzhou, Gansu 730000, China

Abstract

Partial supporting piles removal from deep foundation pit may lead to large-scale foundation pit collapse, resulting in severe consequences. Various studies have investigated the underpinning technology of cutting abutment piles by combining field monitoring and numerical simulation, but there are few studies on cutting supporting piles of foundation pit by the shallow excavation method. Taking an actual deep and large foundation pit as an example, the finite element method (FEM) was adopted to study the surface settlement and the changing trend of the force and displacement of the supporting pile caused by cutting piles during the shallow excavation of double tunnels. The FEM results were verified with the field monitoring data. The simulation results show that the surface settlement around the foundation pit mainly occurs at the pile cutting stage under different excavation sequences (0D, 1D, 2D), and the main distribution area is the one-fold diameter area outside the double tunnel. After the supporting piles are partially cut, the bending moment and displacement of the lower part of the broken piles differ significantly due to different excavation sequences, but the bending moment and displacement of the upper part of the broken piles are basically similar. In the process of removing the supporting piles, the Earth pressure behind the piles is redistributed, and the load is mainly transferred to the adjacent supporting piles outside the tunnel within the radius of one time of the tunnel diameter. However, the load is not evenly transferred to the adjacent supporting piles. Some recommendations for the reinforcement scheme of the supporting structure during cutting supporting piles in deep foundation pit are also proposed. The research results can provide theoretical basis and practical guidance for the construction of similar projects in the future.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Reference41 articles.

1. Fibre optic monitoring of a deep circular excavation

2. Deep excavation and tunneling in soft ground. State-of-the-Art report;R. B. Peck

3. Ground movements caused by braced excavations;T. D. O’Rourke;Journal of the Geotechnical Engineering Division,1981

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3