Deep Learning-Based Dynamic Stable Cluster Head Selection in VANET

Author:

Saleem Muhammad Asim1ORCID,Shijie Zhou1,Sarwar Muhammad Umer2,Ahmad Tanveer3ORCID,Maqbool Amarah4,Shivachi Casper Shikali5ORCID,Tariq Maham4

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu, China

2. Department of Computer Science, Government College University, Faisalabad, Pakistan

3. Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand

4. Department of Computer Science, Government College Women University, Faisalabad, Pakistan

5. South Eastern Kenya University, Kitui, Kenya

Abstract

VANET is the spontaneous evolving creation of a wireless network, and clustering in these networks is a challenging task due to rapidly changing topology and frequent disconnection in networks. The cluster head (CH) stability plays a prominent role in robustness and scalability in the network. The stable CH ensures minimum intra- and intercluster communication, thereby reducing the overhead. These challenges lead the authors to search for a CH selection method based on a weighted amalgamation of four metrics: befit factor, community neighborhood, eccentricity, and trust. The stability of CH depends on the vehicle’s speed, distance, velocity, and change in acceleration. These all are included in the befit factor. Also, the accurate location of the vehicle in changing the model is very vital. Thus, the predicted location with the Kalman filter’s help is used to evaluate CH stability. The results have shown better performance than the existing state of the art for the befit factor. The change in dynamics and frequent disconnection in communication links due to the vehicle’s high speed are inevitable. To comprehend this problem, a graphing approach is used to evaluate the eccentricity and the community neighborhood. The link reliability is calculated using the eigengap heuristic. The last metric is trust; this is one of the concepts that has not been included in the weighted approach to date as per the literature. An adaptive spectrum sensing is designed for evaluating the trust values specifically for the primary users. A deep recurrent learning network, commonly known as long short-term memory (LSTM), is trained for the probability of detection with various signals and noise conditions. The false rate has drastically reduced with the usage of LSTM. The proposed scheme is tested on the real map of Chengdu, southwestern China’s Sichuan province, with different vehicular mobilities. The comparative study with the individual and weighted metric has shown significant improvement in the cluster head stability during high vehicular density. Also, there is a considerable increase in network performance in energy, packet delay, packet delay ratio, and throughput.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3