Enhancing the Usability of Brain-Computer Interface Systems

Author:

Baek Hyun Jae1ORCID,Chang Min Hye2ORCID,Heo Jeong3ORCID,Park Kwang Suk4ORCID

Affiliation:

1. Department of Medical and Mechatronics Engineering, Soonchunhyang University, Asan, Republic of Korea

2. Korea Electrotechnology Research Institute (KERI), Ansan, Republic of Korea

3. Artificial Intelligence Laboratory, Software Center, LG Electronics, Seoul, Republic of Korea

4. Department of Biomedical Engineering, College of Medicine, Seoul National University, Seoul, Republic of Korea

Abstract

Brain-computer interfaces (BCIs) aim to enable people to interact with the external world through an alternative, nonmuscular communication channel that uses brain signal responses to complete specific cognitive tasks. BCIs have been growing rapidly during the past few years, with most of the BCI research focusing on system performance, such as improving accuracy or information transfer rate. Despite these advances, BCI research and development is still in its infancy and requires further consideration to significantly affect human experience in most real-world environments. This paper reviews the most recent studies and findings about ergonomic issues in BCIs. We review dry electrodes that can be used to detect brain signals with high enough quality to apply in BCIs and discuss their advantages, disadvantages, and performance. Also, an overview is provided of the wide range of recent efforts to create new interface designs that do not induce fatigue or discomfort during everyday, long-term use. The basic principles of each technique are described, along with examples of current applications in BCI research. Finally, we demonstrate a user-friendly interface paradigm that uses dry capacitive electrodes that do not require any preparation procedure for EEG signal acquisition. We explore the capacitively measured steady-state visual evoked potential (SSVEP) response to an amplitude-modulated visual stimulus and the auditory steady-state response (ASSR) to an auditory stimulus modulated by familiar natural sounds to verify their availability for BCI. We report the first results of an online demonstration that adopted this ergonomic approach to evaluating BCI applications. We expect BCI to become a routine clinical, assistive, and commercial tool through advanced EEG monitoring techniques and innovative interface designs.

Funder

Soonchunhyang University

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3